
MACHINE LEARNING BASED IRRIGATION SCHEDULING FOR SMART FARMING 

SYSTEMS 

S. Krishna Reddy1*, A. Udayeni Reddy2, S. Ravi Teja2, Chinthakuntla Srivani2, S. Dinesh Reddy2 

1,2Department of Computer Science and Engineering, Sree Dattha Institute of Engineering and 

Science, Sheriguda, Ibrahimpatnam, 501510, Telangana 

*Corresponding author: S. Krishna Reddy 

ABSTRACT 

The research focuses on developing an intelligent irrigation scheduling system using machine learning 

techniques to optimize water use in agriculture. Traditional irrigation systems often suffer from 

inefficiencies such as over- or under-irrigation, labor intensiveness, and lack of precision. To 

overcome these challenges, the project leverages real-time environmental data, including soil 

moisture, temperature, and crop type, to predict the optimal times for activating irrigation pumps. The 

primary goal of the project is to address the inefficiency and inaccuracy of traditional irrigation 

scheduling methods. By integrating machine learning into irrigation management, the system aims to 

reduce water waste, enhance crop health, and minimize labor requirements. The motivation for this 

project stems from the urgent need to optimize water use in agriculture, given increasing water 

scarcity and the impact of climate change. The proposed system comprises several key components. 

Firstly, data collection sensors gather information on soil moisture, temperature, and crop type, which 

is then preprocessed for model training. Machine learning models, including Bernoulli Naive Bayes 

and Ridge Classifier, are trained on historical data to predict irrigation needs. These models are 

evaluated using performance metrics, and the best-performing model is used to make real-time 

predictions. Finally, the system integrates with irrigation infrastructure to automate pump control 

based on model predictions. 
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1. INTRODUCTION 

The history of irrigation dates back thousands of years, with early civilizations developing ingenious 

methods to manage water for agriculture. Ancient societies such as the Egyptians, Mesopotamians, 

and Indus Valley civilizations built intricate irrigation systems using canals, ditches, and reservoirs to 

control the flow of water to their crops. These early techniques laid the foundation for modern 

irrigation practices, demonstrating humanity's innate desire to harness water for agricultural purposes. 

Throughout history, irrigation has played a vital role in supporting agricultural development and 

sustaining civilizations. The advent of irrigation allowed farmers to cultivate crops in arid regions and 

increase food production, leading to population growth and societal advancement. In ancient Rome, 

sophisticated aqueducts were constructed to transport water over long distances, enabling large-scale 

farming and urbanization. During the Middle Ages, Islamic scholars made significant contributions to 

irrigation technology, developing innovative techniques such as qanats and water wheels. These 

advancements improved water distribution and irrigation efficiency, fostering agricultural productivity 

and economic prosperity in regions such as Spain and North Africa. In the 19th and 20th centuries, the 

Industrial Revolution brought about further innovations in irrigation technology. The invention of 

steam engines and electric pumps revolutionized water extraction and distribution, allowing for the 

expansion of irrigation networks and the intensification of agriculture. Large-scale irrigation projects, 
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such as the construction of dams and reservoirs, transformed vast tracts of land into fertile agricultural 

regions, contributing to global food security. 

 

Fig 1: Precision irrigation management 

 In recent decades, the focus has shifted towards sustainable irrigation practices and the integration of 

technology into agricultural water management. Modern irrigation systems incorporate precision 

irrigation techniques, such as drip and sprinkler irrigation, to optimize water use and minimize waste. 

Furthermore, advances in remote sensing, data analytics, and automation have enabled the 

development of smart irrigation systems that dynamically adjust water application based on real-time 

environmental conditions. Today, irrigation continues to be a cornerstone of global agriculture, 

supporting the cultivation of crops in diverse climates and environments. As the world faces growing 

challenges such as climate change, water scarcity, and population growth, the importance of efficient 

and sustainable irrigation practices has never been greater. By building upon centuries of innovation 

and harnessing the power of technology, the future of irrigation holds immense potential to ensure 

food security, promote environmental stewardship, and enhance livelihoods worldwide. 

2. LITERATURE SURVEY 

Ahmed et al. [1] presented the implementation and design of smart irrigation scheme with help of IoT 

technique that is utilized to automate the irrigation procedure from agricultural fields. It can be 

predictable that scheme will make the best change for the farmers to irrigate their field effectively, and 

eliminate the field in watering, that can stress the plant. The established scheme is classified into 3 

portions: user side, sensing side, and cloud side. They utilized Microsoft Azure IoT Hub as a 

fundamental framework for coordinating the communication among the 3 sides. Blasi et al. [2] 

improved the irrigation procedure and provides irrigation water to the maximum range using AI for 

constructing smart irrigation schemes. The sensor measures the temperature & humidity from the soil 

each 10 min. It can be prevented the automated irrigation procedure when the humidity was higher 

and allows it when the humidity was lower. The smart automated irrigation scheme is made by DT 

method that is an ML technique which trains the scheme based on gathered data for creating the 

module which would be utilized for examining and predicting the residual data. The projected 

solution would be established by developing a distributed WSN, where all the regions of farm will be 

enclosed with several sensor models that would be transferring data on a standard server. The ML 
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method would assist prediction of the irrigation pattern depending upon weather conditions and crops. 

Hence, a sustained method for irrigation is given in [3]. Hassan-Esfahani et al. [4] introduced a 

modelling method for an optimum water distribution relation to maximize irrigation regularity and 

minimize yield decrease. Local weather data, field measurements, and Landsat images have been 

utilized for developing a module which defines the field condition by a soil water balance method. 

This method has predicted the elements of soil water balance and optimization of water allocation 

module. Every module includes 2 sub components which consider 2 purposes. The optimization sub 

module utilizes GA for identifying optimum crop water application rates depending upon sensitivity, 

crop type, and growth stage to water stress. 

In Shen et al. [5], the water saving irrigation scheme for winter wheat depending upon the DSSAT 

module and GA is improved for distinct historical years (1970–2017). Hence, a decision-making 

technique to defining either for irrigating development phase of winter wheat was established by 

SVM method depending upon quantity of precipitations in the initial phase of winter wheat and the 

quantity of irrigations. Navarro-Hellín et al. [6] allow a closed loop control system for adapting the 

DSS for estimation errors and local perturbations. The 2 ML methods, ANFIS & PLSR, are presented 

as reasoning engine of this SIDSS. Cardoso et al. [7] presented ML methods using the aim of 

forecasting the appropriate time of day for water administration to agricultural fields. Using higher 

quantity of data formerly gathered by WSN in agricultural fields it can examine techniques that permit 

for predicting the optimal time to water management for eliminating scheduled irrigation which 

always results in excess of water being the major goal of the scheme for saving these similar natural 

resources. For adapting water management, ML methods have been investigated for predicting the 

optimal time of day for water administration [8]. The research methods like DT, SVM, RF, and NN 

are the most attained outcomes was RF, giving 84.6% accuracy. Also the ML solution, a technique 

was established for calculating the quantity of water required for managing the field in analyses. 

Munir et al. [9] used a smart method that can professionally utilize ontology for making 50% of 

decision and another 50% of decision based on sensor information values. The decision in ontology 

and sensor value cooperatively becomes the source of last decision that is the outcome of an ML 

method KNN. This technique avoids the overburden of the IoT server for processing data however it 

decreases the latency rate. The goal of [10] is the research of many learning methods for determining 

the goodness and error comparative for expert decisions. The 9 orchards have been verified in 2018 

by LR, RFR, and SVR approaches as engine of the IDSS presented. In Abioye et al. [11], an enhanced 

data driven and monitoring modelling of the dynamics of variables affected the irrigation of mustard 

leaf plants is proposed. 

3. PROPOSED SYSTEM 

The smart irrigation scheduling system using machine learning techniques is designed to predict 

whether irrigation pumps should be turned on or off based on various input parameters. 

⎯ Data Handling and Preprocessing: Importing and preprocessing the dataset. The data is 

read from a CSV file into a pandasDataFrame. The preprocessing stage includes checking for 

null values and encoding categorical variables into numerical values using label encoding. 

This is crucial for ensuring that the machine learning models can process the data correctly. 

The preprocessing stage ensures that the data is clean and ready for further analysis and 

model training. 

⎯ Data Visualization: Data visualization is performed to understand the distribution and 

relationships within the dataset. Various plots are generated to visualize the data, such as 

count plots for categorical variables and correlation matrices to understand the relationships 
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between different features. These visualizations help in identifying patterns and insights in the 

data, which can be useful for feature selection and understanding the behavior of different 

variables in relation to the target variable, which is the pump status in this case. 

⎯ Model Training: The core of the project involves training machine learning models. Two 

models are primarily used: Bernoulli Naive Bayes and Ridge Classifier. The training 

process involves splitting the dataset into training and testing sets. The models are then 

trained on the training data and saved for future use. The use of different models allows for 

comparison and selection of the best-performing model for the irrigation scheduling task. 

⎯ Model Evaluation: Once the models are trained, their performance is evaluated using several 

metrics, including precision, recall, F1 score, and accuracy. These metrics provide a 

comprehensive understanding of how well the models are performing. Confusion matrices 

and classification reports are also generated to give a detailed view of the model performance 

on the test data. This stage ensures that the models are reliable and can make accurate 

predictions when deployed. 

⎯ Prediction and Testing: After evaluation, the best-performing model is used to make 

predictions on new, unseen data. The system reads the test data, processes it in the same way 

as the training data, and makes predictions using the trained model. These predictions 

determine whether the irrigation pump should be turned on or off for each input record. This 

stage demonstrates the practical application of the trained model in making real-time 

irrigation decisions. 

 

Fig. 2 Block Diagram of the Proposed System. 

3.2 Data Preprocessing  

Data pre-processing is a process of preparing the raw data and making it suitable for a machine 

learning model. It is the first and crucial step while crea  ting a machine learning model. When 

creating a machine learning project, it is not always a case that we come across the clean and 

formatted data. And while doing any operation with data, it is mandatory to clean it and put in a 

formatted way. So, for this, we use data pre-processing task. A real-world data generally contains 

noises, missing values, and maybe in an unusable format which cannot be directly used for machine 

learning models. Data pre-processing is required tasks for cleaning the data and making it suitable for 

a machine learning model which also increases the accuracy and efficiency of a machine learning 

model. 

• Getting the dataset 

• Importing libraries 
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• Importing datasets 

• Finding Missing Data 

• Encoding Categorical Data 

• Splitting dataset into training and test set 

Handling Missing data: The next step of data preprocessing is to handle missing data in the datasets. 

If our dataset contains some missing data, then it may create a huge problem for our machine learning 

model. Hence it is necessary to handle missing values present in the dataset. There are mainly two 

ways to handle missing data, which are: 

• By deleting the particular row: The first way is used to commonly deal with null values. In 

this way, we just delete the specific row or column which consists of null values. But this way 

is not so efficient and removing data may lead to loss of information which will not give the 

accurate output. 

• By calculating the mean: In this way, we will calculate the mean of that column or row which 

contains any missing value and will put it on the place of missing value. This strategy is 

useful for the features which have numeric data such as age, salary, year, etc. 

3.3 Ridge Classifier Model 

The Ridge Classifier is an extension of the Ridge Regression algorithm adapted for classification 

tasks. While Ridge Regression is used for predicting continuous target variables, Ridge Classifier is 

employed for predicting categorical target variables. This model addresses multicollinearity and 

overfitting issues by incorporating a regularization term, similar to its regression counterpart. Here, 

we delve into the principle, working, and process of the Ridge Classifier in detail. 

 

Fig. 3: Architectural diagram of Ridge Classifier model. 

 

Working: 

• Logistic Loss Function: 

o The logistic loss function measures the discrepancy between the actual class labels 

and the predicted probabilities. It aims to minimize the difference, ensuring that the 
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classifier accurately captures the underlying relationship between the features and the 

class labels. 

• Regularization Term: 

o The regularization term 𝛼∑𝑖=1𝑛𝜃𝑖2  is added to the objective function to penalize 

large coefficients. This term is based on the L2-norm of the coefficient vector 𝜃θ. By 

penalizing large coefficients, the Ridge Classifier constrains the model's complexity, 

reducing the risk of overfitting. 

• Optimization: 

o The optimization process involves finding the optimal values of the coefficient vector 

θ that minimize the total cost function 𝐽(𝜃). This can be achieved using various 

optimization algorithms, such as gradient descent. During optimization, the algorithm 

adjusts the coefficients iteratively to minimize the logistic loss function while 

considering the regularization term. 

• Regularization Parameter Tuning: 

o The regularization parameter α plays a crucial role in controlling the degree of 

regularization in the Ridge Classifier. It determines the trade-off between fitting the 

training data well and maintaining model simplicity. The optimal value of 𝛼α can be 

selected using cross-validation techniques such as k-fold cross-validation or grid 

search, which evaluate the model's performance on validation data for different values 

of 𝛼α. 

• Model Evaluation: 

o Once the Ridge Classifier model is trained and tuned, it is evaluated using appropriate 

evaluation metrics such as accuracy, precision, recall, F1 score, and the area under the 

ROC curve (AUC-ROC). These metrics assess the model's predictive accuracy and 

generalization performance on unseen data, providing insights into its effectiveness in 

capturing the underlying patterns in the data. 

4. RESULTS AND DESCUSSION 

The figure 4 presents dataset used for developing the machine learning-based irrigation scheduling 

system. The dataset includes columns for crop type, soil moisture, ambient temperature, and the target 

variable pump status (ON or OFF). This sample provides a glimpse of the raw data before any 

preprocessing steps like label encoding or data splitting are performed. The figure 2 shows the dataset 

after label encoding has been applied to the categorical variable 'crop'. Each crop type is converted 

into a numerical format, making it suitable for machine learning algorithms. This step is crucial for 

handling categorical data and ensuring that the models can process and learn from the 'crop' feature 

effectively. The figure 3 is a count plot illustrating the distribution of the target variable 'pump' status 

(ON or OFF) in the dataset. It helps to understand the balance of classes in the target variable, which 

is important for model performance. An imbalanced dataset can affect the classifiers, making it 

necessary to apply techniques to handle class imbalance if present. 
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Fig 4: Presents the Sample Dataset of this project 

 

 

Fig 5: Label Encoded Dataset. 

 

Fig 6: Count of each label in Dataset. 
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Fig. 7: Performance metrics of Ridge Classifier. 

The figure 7 displays the performance metrics (precision, recall, F1-score, and accuracy) of the Ridge 

Classifier on the test set. These metrics are used to evaluate the model's predictive accuracy and its 

ability to correctly identify both positive and negative pump statuses. 

Accuracy: 97.87% of the time, the model predicted the correct pump status (ON or OFF) for the test 

data. This is a significant improvement over the Bernoulli Naive Bayes model (Fig. 4). 

Precision and Recall: While not explicitly shown in this image, the high F1-score (95.34%) suggests a 

good balance between precision and recall. This means the model is likely performing well on both 

identifying true positives (pump actually ON and model predicts ON) and avoiding false positives 

(model predicts ON but pump actually OFF). 

 

 

Fig 8: Confusion matrix of Ridge Classifier. 

The figure 8 confusion matrix illustrates the performance of the Ridge Classifier by showing the count 

of true positives, true negatives, false positives, and false negatives. It provides a detailed view of the 

classifier's accuracy and the nature of its errors in predicting the pump status. 
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Fig. 9: Uploading the test dataset for model prediction. 

This figure 9 depict a user interface element where a new, unseen dataset is uploaded for the model to 

make predictions on. 

The figure 10 show the results of the model's prediction on the uploaded test dataset. It display the 

predicted pump status (ON/OFF) for each data point in the uploaded set. 

 

 

Fig. 10: Model Prediction on Uploaded Test data. 

 

Table 1: Performance metrics of Bernoulli Naïve Bayes Classifier and Ridge Classifier Model. 
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This table summarizes the performance metrics (precision, recall, F1-score, accuracy) for both the 

Bernoulli Naive Bayes and Ridge Classifier models, allowing for a side-by-side comparison of their 

effectiveness. 

The Ridge Classifier significantly outperforms the Bernoulli Naive Bayes model in terms of accuracy 

(96.67% vs 75%). 

F1-score is available for both models (42.86 for Naive Bayes and 95.34 for Ridge Classifier), 

indicating a moderate performance for Naive Bayes and a good balance between precision and recall 

for Ridge Classifier. 

While the precision and recall values are not available for the Ridge Classifier in the information you 

described, the high F1-score suggests a good performance on both metrics. 

5. CONCLUSION AND FUTURE SCOPE 

The project successfully demonstrates the potential of integrating machine learning techniques into 

irrigation scheduling to address the inefficiencies of traditional methods. By leveraging real-time 

environmental data such as soil moisture, temperature, and crop type, the system can predict the 

optimal times for activating irrigation pumps, thus optimizing water use in agriculture. The 

development and evaluation of machine learning models, specifically Bernoulli Naive Bayes and 

Ridge Classifier, indicate that these models can significantly enhance irrigation management by 

reducing water waste, improving crop health, and minimizing labor requirements. The Ridge 

Classifier, in particular, outperformed the Bernoulli Naive Bayes model in terms of precision, recall, 

F1-score, and accuracy, proving its suitability for this application. Future work could focus on scaling 

the system for use in different agricultural settings and climates. This would involve adapting the 

models to account for region-specific crops, soil types, and environmental conditions. Intelligent 

irrigation scheduling can be integrated with other precision agriculture practices such as fertilization 

and pest control, creating a comprehensive smart farming system that optimizes all aspects of crop 

management. 
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